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We study Strauss’s model of a network with clustering and present an analytic mean-field solution which is
exact in the limit of large network size. Previous computer simulations have revealed a degenerate region in the
model’s parameter space in which triangles of adjacent edges clump together to form unrealistically dense
subgraphs, and perturbation calculations have been found to break down in this region at all orders. Our
solution shows that this region corresponds to a classic symmetry-broken phase and that the onset of the
degeneracy corresponds to a first-order phase transition in the density of the network.
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I. INTRODUCTION

The last few years have seen a surge of interest within the
scientific community in the properties of networks of various
kinds �1–3�. In parallel with empirical studies of real-world
networks such as the Internet �4�, the Worldwide Web �5,6�,
biological networks �7,8�, and social networks �9�, research-
ers have developed theoretical models and mathematical
tools to explain the rich structure and nontrivial characteris-
tics that large-scale networks exhibit.

The most fundamental of network models may be the Ber-
noulli random graph �10� �also sometimes called the Erdős-
Rényi model after two well-known mathematicians who
were among the first to study it �11��. In this model, n iden-
tical vertices are joined together in pairs by edges, each pos-
sible edge appearing with independent probability p for a
total of � n

2
�p edges on average. This model can be thought of

as a special case of the much larger class of exponential
random graphs, which is the class of ensembles of graphs
that maximize ensemble entropy under a given set of con-
straints �usually imposed by observations of the properties of
an actual network in the real world� �12�. The appropriate
constraint for the Bernoulli random graph is a constraint on
the total number of edges in the graph.

The exponential random graph model defines a probabil-
ity distribution over a specified set of possible graphs such
that the probability P�G� of a particular graph G is propor-
tional to e−H�G�, where

H�G� = �
i

�imi�G� . �1�

H�G� is called the graph Hamiltionian, �mi� is the set of
observables upon which the relevant constraints act, and ��i�
is a set of real-valued conjugate fields which we can vary so
as to match the properties of the model to the real-world
network under consideration. Exact or approximate solutions
of average properties of the ensemble are possible for a va-
riety of graph Hamiltonians, including graphs with arbitrary
degree distributions, directed-graph models with reciprocity
�12�, the so-called two-star model �13�, and others �14�.

In this paper we give a solution of a particular famous
exponential random graph model, the clustering model of
Strauss �15�. This model mimics the phenomenon of network

transitivity or clustering, which has been much discussed in
the networks literature �9,16–18�. The model was originally
proposed in 1981 and has recently attracted the attention of
the physics community �19,20�, where the question of how
properly to model transitivity has proved a persistent stum-
bling block for theorists.

II. STRAUSS’S MODEL OF CLUSTERING

Strauss’s model is simple to define. The appropriate graph
observables are the number of edges m�G� and the number of
triangles t�G�, so that the Hamiltonian can be written

H�G� = �m�G� − �t�G� = ��
i�j

�ij − � �
i�j�k

�ij� jk�ki, �2�

where �ij =� ji is an element of the adjacency matrix having
value 1 if an edge exists between vertices i and j and 0
otherwise. When ��0, this Hamiltonian encourages the for-
mation of triangles in the network by assigning lower “en-
ergy” to graphs with many triangles.

Although the Hamiltonian seems simple enough, Strauss
found via numerical simulations that the model sometimes
behaved strangely, developing in certain parameter regimes a
“degenerate state,” a condensed phase in which many tri-
angles form but tend to stick together in local regions of the
graph, rather than spreading uniformly over it. Recently
Burda et al. �19� have performed a perturbation theoretic
analysis of the model,1 finding that the formation of this
condensed phase corresponds to a point at which the pertur-
bation series breaks down at all orders simultaneously. The
nature of this point and of the condensed phase, however, has
not been well understood and a complete solution of the
model has been lacking. In the next section, we present a
solution of the model based on a mean-field approach which
we believe to be exact for all parameter values in the limit of
large system size. Using this solution, we show that the

1Our calculations differ from those of Burda et al. in that Burda et
al. study sparse graphs with finite mean degrees where we study
graphs with finite densities of edges. However, the solution we give
should work in the sparse regime also, so direct comparison of the
two calculations is valid.
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model possesses a classic second-order phase transition be-
tween a high-symmetry regime and a symmetry-broken one,
with a line of first-order transitions between states of high
and low density in the symmetry-broken regime. The forma-
tion of the “condensed phase” observed by Strauss corre-
sponds precisely to the first-order transition from low to high
density.

III. ANALYSIS

A. Mean-field solution

Let Hij be the sum of all terms in the Hamiltonian, Eq.
�2�, that involve �ij:

Hij = ��ij − � �
k�i,j

�ij� jk�ki = �ij�� − � �
k�i,j

� jk�ki	 , �3�

and let H� be the remaining terms, so that H=Hij +H�. The
mean value 
�ij� of �ij can then be written as


�ij� = 0 � P��ij = 0� + 1 � P��ij = 1�

=
1

Z
�
���

e−H e−Hij��ij=1�

e−Hij��ij=0� + e−Hij��ij=1�

= � 1

e�−��k�i,j�jk�ki + 1
 , �4�

where Z=�Ge−H�G� is the partition function. Here 
¯� indi-
cates the average within the ensemble, and the derivation so
far has been exact.

By analogy with spin models, let us call the expression
within the brackets in Eq. �3� the local field coupled to spin
�ij. The mean-field approximation involves replacing the
spin variables in the local field with their ensemble averages,
which in this case means � jk�ki→q�
� jk�ki�. Defining also
the connectance p�
�ij�, we now have

p =
1

e�−��n−2�q + 1
= 1

2�1 − tanh� 1
2� − 1

2��n − 2�q�� . �5�

Now we set up an equation for q via a similar method.
Noting that �ik�kj =1 only when both �ik=1 and �kj =1, we
can write

q � 
�ik�kj�

= � e��ij

�e�−��l�il�lk + 1��e�−��l�kl�lj + 1� + �e��ij − 1�
=

1 + �e� − 1�p
�e�−��n−3�q + 1�2 + �e� − 1�p

, �6�

where in the final line we have made the mean-field approxi-
mation again and made use of the property that e��ij =1
+ �e�−1��ij, since �ij =0 or 1.

We now have two equations in two unknowns which can
be solved by substituting Eq. �5� into Eq. �6� to give a self-
consistency condition on q:

q =
e�−��n−2�q + e�

�e�−��n−3�q + 1�2�e�−��n−2�q + 1� + �e� − 1�
� Q�q� .

�7�

In Fig. 1 we show a plot of the forms y=q and y=Q�q� as
functions of q. The intersections of the two curves give the
solutions of Eq. �7�. As we can see, depending on the values
of � and �, the curves can intersect at either one or three
points in the allowed domain 0�q�1. The regime in which
there are three solutions corresponds to a symmetric-broken
phase with only the outer two solutions being stable �corre-
sponding to minima of the free energy�. Thus, the system
displays the classic phenomenology of a second-order phase
transition, with a critical point separating a high-symmetry
phase from a symmetry-broken one having regimes of high
and low density and an intermediate region of coexistence of
the two. In Fig. 2 we show the phase diagram of the system.

Finally we introduce another mean-field equation for r
�
�ij� jk�ki� which gives the number of triangles in the net-
work:

r � 
�ij� jk�ki� =
e�

�e�−��n−2�q + 1�3 + �e� − 1�
. �8�

FIG. 1. �Color online� Graphical solutions of q=Q�q�. Depend-
ing on the values of the parameters � and �, the line y=q �dashed
line� intersects with y=Q�q� �solid line� either three times or only
once. The parameters �� ,n�� for the two curves shown are �2.3,
6.0� and �0.5, 2.0�.

FIG. 2. The phase diagram in �n� ,�� space. The shaded area
corresponds to the coexistence region in which the system can be in
either of two stable states, one of high density and one of low.
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In Fig. 3 we compare our solutions for p, q, and r with
simulation results for a system of size n=500 and, as we can
see, the agreement between theory and simulation is excel-
lent.

B. Approximation

As mentioned in the Introduction, we believe that the
mean-field solution found in the previous section is exact,
because in the limit of large system size the system becomes
fundamentally infinite dimensional, and mean-field theory is
usually exact in the large dimension limit.

In fact, Eq. �4� really makes two approximations. One is
the mean-field approximation � jk�ki→ 
� jk�ki�, but we have
also assumed that the average of the tanh function can be
approximated by the tanh of the average. While the first ap-
proximation can be justified on the basis of the high effective
dimension of the system, the second needs more attention. It
can be justified by performing a series expansion of the tanh
function, applying the mean-field approximation to the series
term by term and then resumming the result again �21,22�.
However, while this method works, it is not as simple as our
brief description makes it sound, because the series involves
averages over arbitrarily high moments of the graph opera-
tors and proving that these terms are negligible requires
some care.

Let us rewrite Eq. �4� thus:

p � 
�ij� =
1

2�1 + �tanh�− 1
2� + 1

2� �
k�i,j

Sk	�
= 1

2 �1 + 
tanh��̃ + �̃S��� , �9�

where for convenience we have defined �̃=− 1
2�, �̃= 1

2�, Sk
=�ik�kj, and S=�k�i,jSk. Expanding the tanh function about

�̃, we get


tanh��̃ + �̃S�� = �
m=0

�
tanh�m���̃��̃m

m!

Sm� . �10�

Now, keeping in mind that Sk
m=�ik

m�kj
m =�ik�kj =Sk for any m,

since �ij =0,1, we can write the correlation functions 
Sm� in
the form


Sm� = ���
k

Sk	��
k

Sk	¯ ��
k

Sk	 �11a�

=am,1
S1 + S2 + ¯ � + am,2
S1S2 + S1S3 + ¯ �

+ am,3
S1S2S3 + ¯ � + ¯ �11b�

=am,1�n − 2�q + am,2�n − 2

2
	q2 + am,3�n − 2

3
	q3 + ¯ .

�11c�

In the last line we have made the assumption that a product

S1S2� can be approximated as 
S1�
S2�=q2 and similarly for
higher products. This approximation is of the nature of a
mean-field approximation, ignoring correlations between
single pairs of spin variables, which will be of order 1 /n in
the large-system-size limit where each variable interacts with
an arbitrary number of others.

The coefficient am,l in Eq. �11� is the number of ways of
selecting one Sk from each of the m sums in Eq. �11a� so that
there are l unique indices in the resulting product. It is simple
to show that �i=1

l � l
i
�am,i= lm and thus by induction to prove

that the exponential generating function for am,l satisfies

gl�z� = �
m=1

�
zmam,l

m!
= �ez − 1�l. �12�

Then, by repeated differentiation,

am,l = � �m

�zm �ez − 1�l�
z=0

. �13�

Combining this result with Eq. �11� and taking the limit of
large n, we find


Sm� = �
l=0

�

am,l�n − 2

l
	ql � �

l=0

�

am,l�n − 2�lql/l!

= � �m

�zm�
l=0

�
�ez − 1�l�n − 2�lql

l! �
z=0

= � �m

�zme�n−2�q�ez−1��
z=0

.

�14�

FIG. 3. �Color online� Comparison of our analytic solution
�solid lines� and Monte Carlo simulation results �circles� for p
= 
�ij�, q= 
� jk�ki�, and r= 
�ij� jk�ki�, for a system of n=500 ver-
tices. The parameter values were �a� �=2.2 and �b� �=0.53. �See
Fig. 2.�
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The differentiation in the last line can be carried out ex-
plicitly for any given value of m, but there is no simple
closed-form expression for the general case. However, none
is needed in the large-n limit. Each successive differentiation
with respect to z generates an extra factor of �n−2�q. But the
graphs we are interested in are dense, meaning that p, q, and
r all tend to finite, nonzero limiting values as n→�. Thus
�n−2�q is a large quantity and to leading order we need only
retain the highest-order term in the derivative, which is sim-
ply ��n−2�q�m. Thus Eq. �10� becomes


tanh��̃ + �̃S�� = �
m=0

�
tanh�m���̃��̃m

m!

Sm�

= �
m=0

�
tanh�m���̃��̃m

m!
��n − 2�q�m

= tanh��̃ + �̃�n − 2�q� �15�

and

p = 1
2 �1 + tanh��̃ + �̃�n − 2�q�� , �16�

which is identical with Eq. �5�. A similar derivation can be
performed for Eq. �6�, and hence the entire mean-field solu-
tion is exact in the limit of large system size.

IV. DISCUSSION

What does our solution of the Strauss model tell us? To
begin with, it tells us the precise nature of and reason for the
“degenerate state” observed by Strauss in simulation studies
and by Burda et al. �19� in their perturbative calculations.
Strauss’s observations were correct—something special does
happen to the model in the degenerate region. In fact, there is
a first-order phase transition driven by the “field” parameter
coupled to the number of edges in the graph. This also ex-
plains the breakdown of the perturbation expansion at this
point, since such expansions typically break down at first-
order transitions because of the corresponding pole in the
free energy. The degenerate phase of the model is a high-
density phase in which there is a large number of triangles in
the graph, forming what appears to be almost a complete
graph: the connectance of the network is close to 1 in this
regime �Fig. 3�.

More importantly, the first-order nature of the transition
means there is a discontinuous jump in the density of tri-
angles as we enter the degenerate state and thus there is no
intermediate set of parameter values that will give the graph
a moderate density of triangles as seen in real-world net-
works. While Strauss’s model seems the most natural form
for an exponential random graph model of transitivity, our
results imply that it will in fact never be a good model of
real-world networks with moderate clustering. One can of
course reduce the value of the parameter � until we pass
through the critical point so that the first-order transition dis-
appears, in which case we recover a smooth variation of the
density of the graph with �, but then the graph no longer has
any significant clustering because of the small value of �.

These observations do not necessarily imply that expo-
nential random graphs are incapable of mimicking networks
with clustering; indeed they may represent our best current
hope for making clustered network models. Our results im-
ply, however, that Strauss’s original model with a single term
in the Hamiltonian to encourage triangles must, at the very
least, be augmented in some way in order to achieve this
aim.

V. CONCLUSIONS

In this paper we have given a mean-field solution of
Strauss’s model of a network with clustering. Because of the
intrinsically high-dimensional nature of networks, we believe
this solution to be exact in the limit of large system size,
which is the main case one is normally interested in. We
have also performed Monte Carlo simulations of the model
that confirm our solution to high accuracy. Our solution in-
dicates that the model has no regime in which it displays
moderate levels of clustering similar to those seen in real-
world networks; presumably it will be necessary to introduce
further terms into the Hamiltonian to avoid this pathology.

We believe exponential random graphs offer one of the
most flexible tools for the modeling of general networks and
look forward to further developments. We hope that the for-
malism introduced here will serve as a practical starting
point for a variety of problems.
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